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Molecular-dynamics force models for better control of energy dissipation in numerical simulations
of dense granular media
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We first describe the three-dimensional extension of the molecular-dynamics models for granular media
simulations. We then discuss the known energy dissipation problem occurring when simulating dense granular
media with the usual molecular-dynamics forces models. We finally propose a force model able to control the
energy dissipation in the multiparticle contact situations typical to dense granular media, together with appro-
priate numerical results.
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I. INTRODUCTION

To perform computer simulations of granular media, o
has to know how to handle the physical behavior of
contacts that may eventually take place between the gra
Two different approaches exist on that matter. The first on
to assume an expression for the repulsive force acting
tween the grains, which leads to molecular-dynamics m
els, and the second one is to instantaneously change th
rection and value of the velocities according to conserva
equations each time a contact occurs, this second appr
leads to event-driven models. We will here focus on
molecular-dynamics models, and especially on what happ
energetically with those models at a contact point for de
media, or in other words, for multiparticle contacts. Mul
particle contacts occur when a particle experiences cont
with several other particles at the same time so that th
contacts have a direct influence on each other. Recalling
the molecular-dynamics models assume that contacts ar
dependent from one another, we are dealing with a situa
that is theoretically beyond the model capabilities. Unfor
nately, it is common in practical simulations to experien
multiparticle contacts, as simulations of dense media
widely performed. Several papers by Ludinget al. @1# stress
that if we do not know quantitatively how the energy is d
sipated at a contact in a real granular medium, how m
energy is dissipated in simulated media for multiparticle c
tacts is still a subject for discussions. As shown in@1#, for
multiparticle contacts, molecular-dynamics models may le
to a much too low energy dissipation, whereas event-dri
models may lead to a much too high energy dissipation
the latter case, the inelastic collapse phenomenon@2#, in
which the whole energy of the system is dissipated supp
this conclusion. With the molecular-dynamics models,
lack of energy dissipation has also been noticed by Mu¨ller
@3#, who performed simulations of a rock falling on a gran
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lar bed, which came in agreement with real experime
when an external friction coefficient between air and gra
was artificially added. We will investigate here this kind
energy dissipation obtained with molecular-dynamics mod
for multiparticle contacts and bring different ideas on how
improve it.

II. MOLECULAR-DYNAMICS MODELS

We introduce here the molecular-dynamics models w
spherical particles. This shape makes the explanations e
and does not cause the model to be in any way less m
ingful. Attempts to adapt molecular-dynamics models to no
spherical particles have been made and the reader may
to @4# for more information on this subject. LetG1 andG2 be
two spherical grains in a three-dimensional space~both with
their characteristic radiusRi , massmi , inertia momentI i ,
position xi of the mass center, linear speedv i , and spin
vector vi , for i P$1,2%! experiencing a contact with eac
other at pointC. Let P be the plane tangent toG1 andG2 at
point C. We can define a unitary vectorun normal toP as

un5
x22x1

ix22x1i , ~1!

and the relative velocityvc of G1 andG2 at pointC

vc5 ẋ22 ẋ11un`~R1v11R2v2!. ~2!

In the molecular-dynamics models, grains overlap whene
a contact occurs, which allows us to quantify the deform
tion the grains experience at the contact point thanks to
vector quantityj, whose projectionjn on un is shown in Fig.
1. Consider the differential equation

j̇5~un`u̇n!`j2vc . ~3!

We define the overlapj as the solution of Eq.~3! for which
j50 when the contact begins. The normal and tangen
overlapsjn andjt are then given by
©2001 The American Physical Society02-1
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jn5j•un ,

jt5j2~j•un!un . ~4!

From Eqs.~1!, ~2!, and~4!, the time derivative of the norma
overlap reads

j̇n52vc•un . ~5!

Note that with Eq.~2!, Eq. ~5! simplifies to what intuition
suggests:jn5R11R22ix22x1i . Let ut be a unit vector nor-
mal to un , which follows the motion of planeP, which is
such thatu̇t5(un`u̇n)`ut . If j t5jt•ut, then

j̇ t52vc•ut . ~6!

Let fG1→G2
andfG2→G1

be the forces applied, respectively,

G2 andG1 at the contact point. Equilibrium conditions giv
fG1→G2

52fG2→G1
. Therefore, in the following, we will use

exclusively the quantityfG1→G2
, which we will simply de-

note f. In the molecular-dynamics procedure, the cont
forces are computed as functions of the overlapsjn and jt

and their time derivativesj̇n and j̇t ,

f5fn~jn ,j̇n!un1ft~jt ,j̇t!, ~7!

whereft is a vector quantity parallel to the contact planeP.

Assuming that the tangential forceft(jt ,j̇t) does not al-
ready take into account the Coulomb friction, one has
replace it in Eq.~7! by

FIG. 1. A contact between two grainsG1 and G2 with the
molecular-dynamics models.
01130
t
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ft
C~jt ,j̇t!5min@mfn~jn ,j̇n!,ift~jt ,j̇t!i #ut , ~8!

wherem is the friction coefficient, and

ut5H ft~jt ,j̇t!

ift~jt ,j̇t!i
if ft~jt ,j̇t!Þ0,

0 if ft~jt ,j̇t!50.

~9!

Here are two examples of force models, which are the m
frequently used ones for practical simulations. We descr
those models without the Coulomb friction, which has to
added afterwards according to Eq.~8!.

Viscoelastic force.This force, proposed by Cundall an
Strack @5# is a linear combination of elastic and viscou
terms. Energy is dissipated at the contact point by the
cous term. We give the linear expression of this force,
nonlinear versions have been proposed and investigated~see
@6#!

fn~jn ,j̇n!5knjn1cnj̇n , ~10!

ft~jt ,j̇t!5ktjt1ctj̇t . ~11!

Walton force.This force, which models the elastoplast
behavior of the grains at the contact point was proposed
Walton and Braun@7#. The energy is dissipated at a conta
as plastic deformation. The loading is assumed elastopla
and the unloading elastic. In either loading and unload
phases, the force is taken as a linear function of the over
As the force only depends on the overlap, the loadin
unloading paths obtained with the Walton force model m
be drawn on a force-overlap diagram, as sketched on Fig
left. In order to take into account the elastoplastic loadi
the loading slopek(1) has to be lower than the purely elast
unloading slopek(2a). If a reloading takes place, the forc
follows a purely elastic slope until it reaches the first loadi
path@this corresponds to part~3! on the left diagram of Fig.
2#. It would have been more realistic to model the loadi
phase as a first purely elastic part followed by a plastic p
and to take into account the 3/2 exponent given by the H
theory for the elastic part, but this simple model contains
overall behavior of elastoplastic materials and is theref
sufficient for a first approximation. The normal force read

fn~jn ,j̇n!5H min@fn
(2a) ,kn

(1)jn# for j̇n.0,
~12!
max@f ,0# for j̇ ,0.

l
-
r-
n n

FIG. 2. Behavior of force-
overlap paths for Walton force
model ~left! and the other mode
~right!. For each model the dia
gram may be used either for a no
mal or a tangential force. The
paths divide in ~1!: loading,
(2a,2b): unloading, ~3!: reload-
ing.
2-2
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In Eq. ~12!,

fn
(2a)5kn

(2a)~jn2jn
M !1fn

M , ~13!

wherejn
M andfn

M are the values ofjn andfn at the instant

j̇n last changed signs, either from positive to negative
from negative to positive~see Fig. 2, left diagram!. A simple
expression for the tangential Walton force roughly takes
same features as the normal Walton force,

ft~jt ,j̇t!5H min@f t
(2a) ,kt

(1)j t#ut for j̇ t.0,

max@f t
(2a),0#ut for j̇ t,0.

~14!

In Eq. ~14!,

f t
(2a)5kt

(2a)~j t2j t
M !1f t

M , ~15!

wherej t
M andf t

M are the values ofj t andf t at the instantj̇ t

last changed signs, either from positive to negative or fr
negative to positive andut is the unit vector defined whe
jtÞ0 by ut5jt /j t . Both fn and ifti may be drawn as
functions of the overlaps~respectively,jn or j t) on a force-
overlap diagram as the left one of Fig. 2.

Those two force models are the most used in simulatio
and we will focus on them in the following as other mode
that have been developed~see, for example,@6,8#! usually
are improvements of those two.

III. TUNING MOLECULAR-DYNAMICS MODELS
WITH REAL EXPERIMENTS

The molecular-dynamics models described in Sec. II
technically operational, but the parameters of the force m
els (kn , kt , cn , ct for the viscoelastic model andkn

(1) , kt
(1) ,

kn
(2a) , kt

(2a) for the Walton model! do not have a true physi
cal reality, which means they have noa priori expressions
for which the modeled behavior will be realistic. Those p
rameters then have to be set empirically, so that the mo
quantitatively reproduces some real and well-known exp
ments. Experiments that involve more than one contact
time usually do not provide measures that allow any anal
linking between the experiment and the model paramet
the number of cases to investigate for the resolution wo
be too high, and numerical implementation would be ve
heavy. We are left with single contact experiments to set
parameters, with no guarantee that situations that invo
several simultaneous contacts will then be realistically m
eled.

The experiment we will work with is the collision of two
grainsG1 andG2 having no initial spin. Three key quantitie
can be measured: the duration of the contacttc and the nor-
mal and tangential restitution coefficientsen andet , defined
as follows using the notations of Sec. II:
01130
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j̇n

f

j̇n
i

,

et52
j̇ t

f

j̇ t
i
, ~16!

where i and f as exponents refer to quantities immediate
before and immediately after the collision. Note thatet de-
pends on the impact angle when the contact is slippery bu
constant for a sticky contact. In this section, we assume
contact is and remains sticky. The tangential restitution
efficient then has a fixed value. This also allows us to u
directly Eq. ~7!, without Coulomb friction for the analytic
resolutions. The slippery behavior of the contact, toget
with the subsequent alteration ofet will be provided after-
wards through Eq.~8!. We will find here the analytic expres
sions fortc , en , andet for the modeled contact as function
of the model parameters. By inverting those expressions,
will be able to set the model parameters so thaten , et , and
tc are controlled for single contact situations. The moti
equations for the grainsG1 andG2 read

m1ẍ152f,

m2ẍ25f,

I 1v̇152R1un`f,

I 2v̇252R2un`f. ~17!

As the two grains experience the collision, planeP will not
move much, which allows us to assumeun is a constant.
Equation~3! then simplifies toj̇52vc and Eq.~2! gives

j̈5 ẍ12 ẍ22un`~R1v̇11R2v̇2!. ~18!

From Eqs.~17! and ~18!, one finds

j̈52
1

me f f
f2S R1

2

I 1
1

R2
2

I 2
D ft~jt ,j̇t!, ~19!

where 1/me f f51/m111/m2. As the grains have no initia
spin, the centers of the grains will move in a plane. Calli
u' a unit vector normal to that plane, we define a unit vec
tangential to the contact byut5un`u' . Equation~19! then
projects onun andut as follows:

j̈n52
1

me f f
fn~jn ,j̇n!,

j̈ t52S 1

me f f
1

R1
2

I 1
1

R2
2

I 2
D ft~jt ,j̇t!•ut . ~20!

Wherej t5jt•ut . Those differential equations may be solve
for jn andj t , based upon expressions forfn andft such as
Eqs.~10! and~11! or Eqs.~12! and~14!. For those two cases
we have the following solutions:
2-3
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Viscoelastic force.From Eqs.~10!, ~11!, and~20! we find
the following set of differential equations:

j̈n1
cn

me f f
j̇n1

kn

me f f
jn50,

j̈ t1ctS 1

me f f
1

R1
2

I 1
1

R2
2

I 2
D j̇ t1ktS 1

me f f
1

R1
2

I 1
1

R2
2

I 2
D j t50.

~21!

Solving Eq. ~21! provides expressions foren , et , and tc
according to Eq.~16! as functions ofkn , cn , kt , and ct .
Inverting those expressions, we find

kn5
me f f

tc
2 @p21 ln~en!2#,

cn52
2me f f

tc
ln~en!,

kt5
1

tc
2S 1

me f f
1

R1
2

I 1
1

R2
2

I 2
D @p21 ln~et!

2#,

ct52
1

tcS 1

me f f
1

R1
2

I 1
1

R2
2

I 2
D ln~et!. ~22!

The set of equations~22! allows us to control the values o
en , et , and tc for single sticky contacts situations with th
viscoelastic force model.

Walton force.From Eqs.~12!, ~14!, and ~20! we find the
following differential equations:

j̈n1
kn

(1)

me f f
jn50 for j̇n.0,

j̈ t1kt
(1)S 1

me f f
1

R1
2

I 1
1

R2
2

I 2
D j t50 for j̇ t.0,

j̈n1
kn

(2a)

me f f
jn2

kn
(2a)2kn

(1)

me f f
jn

M50 for j̇n,0,

j̈ t1S 1

me f f
1

R1
2

I 1
1

R2
2

I 2
D

3@kt
(2a)j t2~kt

(2a)2kt
(1)!j t

M#50 for j̇ t,0, ~23!

where the quantitiesjn
M andj t

M refer to the values ofjn and
j t at the end of the loading phases. Solving Eq.~23! for
solutions with continuous derivatives gives expressions
en , et , andtc according to Eq.~16! as functions ofkn , cn ,
kt , andct . Inverting those expressions, we find
01130
r

kn
(1)5me f fS p~11en!

2tc
D 2

,

kn
(2a)5me f fS p~11en!

2tcen
D 2

,

kt
(1)5

1

1

me f f
1

R1
2

I 1
1

R2
2

I 2

S p~11et!

2tc
D 2

,

kt
(2a)5

1

1

me f f
1

R1
2

I 1
1

R2
2

I 2

S p~11et!

2tcet
D 2

. ~24!

Equations~24! allow us to control the values ofen , et , and
tc for single sticky contacts situations with the Walton for
model.

By expressing the coefficients of the force models
shown in this section, we know that any single sticking co
tact situation will be realistically modeled. However, w
have no guarantee that situations involving several simu
neous contacts will be realistic.

IV. ENERGY DISSIPATION
FOR MULTIPARTICLE CONTACTS WITH
THE MOLECULAR-DYNAMICS MODELS

In Sec. III, we found expressions for the parameters rul
the behavior of the force model such that single contact
periments are realistically modeled. With those expressio
however, we do not have any guarantee that multipart
contacts will be accurate. We investigate here the behavio
normal forces for multiparticle contacts when using expr
sions found in Sec. III for the model parameters, pointing
that energy dissipation is then too low for quasistatic mu
particle contacts.

A. Experimental setup

We use a set ofn identical beads vertically stacked over
bottom plate as shown in@1#. The initial distance between
neighboring beads and between the bottom bead and the
tom plate is strictly positive, equal tol i . Gravity is set to 0,
energy being brought to the system through the initial vel
ity v i,0, common to each of the beads. The beads are c
strained to move vertically. Contacts are indexed from 1
the contact between the bottom plate and the bead at
bottom of the stack ton for the contact between the tw
topmost beads. This setup is represented on Fig. 3, with
ful notations.

When performing this simulation, the beads fall and co
tacts occur in the stack. For small values ofl i , contact inter-
vals overlap; multiparticle contacts then take place. T
stack will eventually reach a state where all the beads m
upwards with velocities decreasing from the top of the sta
ensuring that no further contact will take place. We may th
measure the ratioe of the final total kinetic energy over th
initial total kinetic energy. This ratio measures the ene
loss due to the contacts that took place inside the stack.
2-4
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also measure the force-overlap path for each contact.
energy dissipated at a contact is the surface in the fo
overlap plane that is delimited by the force-overlap path.

B. Energy dissipation with the usual force models

As written in @1#, e only depends on the value ofl i /v iDt,
independently of the values ofv i , Dt andl i taken separately
Plotting e againstl i /v iDt leads to the curves shown on Fi
4. Reference@1# concludes that for dense granular med
~small values ofl i), no matter how small the value ofDt, the
dissipated energy will be about ten percent of the initial
ergy, which may be too low, in particular, this leads in@3# to
very unrealistic behaviors. We compare the energy dissip
at each contact whenl i50 m andl i5531024 m on Fig. 8
with the viscoelastic and Walton force models. Whenl i55
31024 m, all the contacts that occur are single contacts
the energy dissipation is therefore accurate for the two fo
models discussed here. Whenl i50, multiparticle contacts
take place and we see that the energy dissipated at
contact is very much lower than for the previous case. In F
5, we show the force-overlap paths obtained withv i5
20.2 m/s, l i50, for contacts 1~between the bottom plat
and the bead lying on it!, 4, 7, and 10~between the two
topmost beads! either for the viscoelastic and the Walto
force models. Note that the slope for the first loading of
first contact is twice that of the other contacts, this is beca
this contact is between a bead and the bottom plate w
mass is infinite. We see that either for the viscoelastic or
Walton force models, there is plenty of space available in
force-overlap diagram to dissipate energy. This space is
used by any of those models and the additional dissipa
brought by the multiparticle contacts is restricted to a sm
hysteretic surface~circled by a spiral for the viscoelasti
model and by triangles for the Walton model!. One idea
would be to use more of the space available in the for
overlap diagram.

V. USING AVAILABLE SPACE IN
THE FORCE-OVERLAP DIAGRAM

The Walton force model gives an expression of the fo
that only depends on the overlap. It is then easy to repre
the force-overlap path. This kind of path for the Walto
model is shown on the left diagram of Fig. 2. A cycle

FIG. 3. Experimental setup. Contacts numbered starting at p
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loading-unloading may take place in the part (2a), leading to
no energy dissipation at all. Instead of taking a purely ela
slope for reloadings, we may assume reloadings are ela
plastic, with the same properties as the first loading. T
modifies the part~3! on the left diagram of Fig. 2 to that on
the right diagram, as any reloading phase then has the s
k(1). Unfortunately, the overlap may then grow indefinite
with a bounded force, which leads to the model dissipat
all available energy. That is why we impose the last p
(2b) of the unloading path to be elastic with a strictly pos
tive fixed slope, as shown on the right diagram of Fig.
Otherwise stated, we use here (f,j) either for (fn ,jn) or
(ifti ,j t), thus describing the normal and tangential for
models at the same time. We will now quantify exactly ho
much energy will be lost with this model every time a co
tact occurs. In order to do that, we introduce the energE
stored in a contact as

Ė5f~ t !j̇, ~25!

with E50 when the contact begins. The energy dissipated
the contact is the surface circled by the path of the force
a force-overlap diagram. Assuming an unloading phase
gins at point (j,f) on such a diagram, with some energyE
stored in the contact we may expressk(2a) so that the part of
E dissipated in this unloading phase is (12en

2)E if no re-
loading takes place

k(2a)5
f2k(2b)jù

j2jù
, ~26!

wherejù is the value ofj for which (2a) and (2b) inter-
sect,

jù5
fj22en

2E

f2k(2b)j
. ~27!

With Eqs.~26! and~27! the energy dissipated at the end
the contact will be 12en

2 times the total energy brought t
the contact, no matter how many reloadings take place
when they take place. Equations~26! and ~27! express the
slopek(2a) as a function ofk(2b) and of (j,f,E), which is
the state of the contact at the begining of the unloading.

te. FIG. 4. Energy dissipated for multiparticle contacts with som
molecular-dynamics force models.
2-5
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FIG. 5. Force-overlap paths
for the viscoelastic model~top!,
the Walton model~middle!, and
the other model~bottom!. Those
paths are drawn for contacts 1, 4
7, and 10 from left to right.
in
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l
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ss

e-
a

-

still have to set values fork(1) and k(2b). k(1) controls the
duration of the loading phase for a single contact. Solv
the motion equations for a single contact, one finds the
lowing expressions fork(1) for either normal or tangentia
forces:

kn
(1)5me f fS p

2t (1)D 2

,

kt
(1)5

1

1

me f f
1

R1
2

I 1
1

R2
2

I 2

S p

2t (1)D 2

, ~28!

where t (1) is the duration of the loading phase for a sing
contact. For the simulations, we taket (1)5(1/2)tc ; that is,
01130
g
l-

t (1) is half the duration of a single contact. We now discu
the value of the slopek(2b). Let a be

a5
k(2b)

k(1)
. ~29!

Intuitively, when a nears 1, there is not enough space b
tween~1! and (2b) to dissipate energy, there is therefore
value above whicha must not go. Integrating the force
overlap path for a single contact, one finds the inequalitya
<12en

2 . As k(2b) is strictly positive, so isa and we have

0,a<12en
2 . ~30!
o
-
,

s

FIG. 6. Overlaps drawn
against time for a bead subject t
gravity lying on a plane and simu
lated with the model. On the left
a50.5 and on the righta50.9.
In both cases, the bead weigh
0.188 kg.
2-6
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Now, consider a single bead subject to gravity lying on
horizontal plane. If the bead is initially tangent to the plan
it will slightly move down until an equlilibrium is reache
after a timete with the force between the bead and the pla
equal to the weight of the bead. The timete depends on the
value of a. The largera is, the smallerte will be, with a
minimal value forte when a reaches its maximal value o
12en

2 . In Fig. 6, the overlap is drawn against time for tw
values ofa for this experiment of a bead lying on a plan
This figure shows that the stability is quicker for high valu
of a. Note that ifa50, which violates Eq.~30!, te51` as
the overlap will grow infinite. In this case, potential ener
transforms into kinetic energy and dissipates at the con
point, leading to the dissipation of an infinite amount of p
tential energy together with the bead moving downwards
the plane.

VI. ENERGY DISSIPATION WITH THE FORCE MODEL

We perform the experiment described in Sec. IV with t
model, and compare the results with those obtained w
Walton and viscoelastic models. Figure 4 shows that the t
energy dissipated by the stack of beads is significantly hig
for this model than for the previous ones, for small values
l i /v iDt. Let E be the total energy brought to a contact, tha
the work of the contact force in all loading and reloadi
phases, andEd the amount of energy dissipated in the sa
contact. With Eqs.~26! and ~27!, the ratioEd /E is always
equal to (12en

2), independently of the loading-unloadin
history of the contact. This was not the case for the fo
models of Sec. II. Performing the numerical experiment
Sec. IV, we draw on Fig. 7 the ratioEd /E for each contact
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FIG. 7. Ratio of the energy dissipated at a contact over the t
energy brought to this contact for all the contacts of the numer
experiment of Sec. IV. Contact index is 1 for the contact betw
the bottom plate and the stack of beads and 10 between the
topmost beads.
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and for all three force models. It is clear that the only mod
that controls the ratioEd /E is the one we propose in thi
section. Figure 7 shows that the case where all contacts
single (l i55.1024 m) is very similar to the multiparticle
case (l i50 m) simulated with the model. Figure 8 show
that the energy dissipated at each contact is higher for
model than for the previous ones. We draw in Fig. 5 the fo
paths for contacts 1, 4, 7, and 10 with the force model.
see that the surface circled by the path is there greater
for the viscoelastic or the Walton force models.

VII. CONCLUSION

We described a molecular-dynamics model able to
crease the energy dissipation in multiparticle contacts si
tions. With this model, it is possible to choose the fraction
the energy brought to the contact that will be dissipat
independently of the loading-unloading history of the co
tact, which is not the case for the usual force models. T
feature, in comparison to the Walton force model is th
loading-unloading cycles will take advantage of the roo
available in the force-overlap plane to dissipate more ene
However, some of the parameters of this model may still
improved, as for example, the slope of the loading/reload
phase that was taken equal to the slope of the loading p
of the Walton model~24!. This slope could, for example, b
changed from one reloading to the next one. Those par
eters have to be validated with comparison to some a
tional experiments for further improvements of the mode
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FIG. 8. Energy dissipated at each contact for various force m
els and for two values ofl i .
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