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Molecular-dynamics force models for better control of energy dissipation in numerical simulations
of dense granular media
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We first describe the three-dimensional extension of the molecular-dynamics models for granular media
simulations. We then discuss the known energy dissipation problem occurring when simulating dense granular
media with the usual molecular-dynamics forces models. We finally propose a force model able to control the
energy dissipation in the multiparticle contact situations typical to dense granular media, together with appro-
priate numerical results.
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[. INTRODUCTION lar bed, which came in agreement with real experiments
when an external friction coefficient between air and grains
To perform computer simulations of granular media, onewas artificially added. We will investigate here this kind of

has to know how to handle the physical behavior of theenergy dissipation obtained with molecular-dynamics models
contacts that may eventually take place between the grain_&?f multiparticle contacts and bring different ideas on how to
Two different approaches exist on that matter. The first one i§nprove It.
to assume an expression for the repulsive force acting be-
tween the grains, which leads to molecular-dynamics mod- [l. MOLECULAR-DYNAMICS MODELS
els, and the second one is to instantaneously change the di-

rection and value of the velocities according to conservation

) : . spherical particles. This shape makes the explanations easier
equations each time a contact occurs, this second approagﬁd does not cause the model to be in any way less mean-
leads to event-driven models. We will here focus on the

lecular-d ; e d all hat h ingful. Attempts to adapt molecular-dynamics models to non-
molecular-dynamics models, and especially on what happens e rica| particles have been made and the reader may refer

energetically with those models at a contact point for densg, [4] for more information on this subject. L&, andG, be
media, or in other words, for multiparticle contacts. Multi- o spherical grains in a three-dimensional spédmth with
particle contacts occur when a particle experiences contac{feir characteristic radiug;, massm, inertia moment; ,
with several other particles at the same time so that thosgosition x; of the mass center, linear speeg, and spin
contacts have a direct influence on each other. Recalling thgiector e, , for i €{1,2}) experiencing a contact with each
the molecular-dynamics models assume that contacts are igther at pointC. Let P be the plane tangent 8, andG, at
dependent from one another, we are dealing with a situatiopoint C. We can define a unitary vector, normal toP as
that is theoretically beyond the model capabilities. Unfortu-

nately, it is common in practical simulations to experience Xo— X1

multiparticle contacts, as simulations of dense media are UnZW: 1)
widely performed. Several papers by Ludiegal.[1] stress

that if we do not knovy quantitatively how the' energy is dis- 54 the relative velocity . of G; and G, at pointC

sipated at a contact in a real granular medium, how much
energy is dissipated in simulated media for multiparticle con-
tacts is still a subject for discussions. As shown 11, for
multiparticle contacts, molecular-dynamics models may lea
to a much too low energy dissipation, whereas event-drive
models may lead to a much too high energy dissipation. |
the latter case, the inelastic collapse phenomefinin
which the whole energy of the system is dissipated support
this conclusion. With the molecular-dynamics models, the™
lack of energy dissipation has also been noticed bylléu } .
[3], who performed simulations of a rock falling on a granu- &= (u\up))Né—vq. (3

We introduce here the molecular-dynamics models with

vC:).(Z_).(l—’_ Un/\(lel+ szz). (2)

?l]n the molecular-dynamics models, grains overlap whenever

contact occurs, which allows us to quantify the deforma-
ion the grains experience at the contact point thanks to the
ector quantityg, whose projectiorg, onu,, is shown in Fig.
Consider the differential equation

We define the overlag as the solution of Eq(3) for which
*Electronic address: lionel.pournin@gmx.fr &=0 when the contact begins. The normal and tangential
"Electronic address: thomas.liebling@epfl.ch overlaps¢, and & are then given by
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FIG. 1. A contact between two grains,; and G, with the
molecular-dynamics models.

&n=§& Uy,
&=§& (& uyuy,. (4)

From Eqgs(1), (2), and(4), the time derivative of the normal
overlap reads

©)

Note that with Eq.(2), Eqg. (5) simplifies to what intuition
suggestsé, =R, + R,— X, —X4|. Letu, be a unit vector nor-
mal to u,, which follows the motion of plané, which is

such thatu,= (u,/\U,)Au,. If &=&-u, then

&n=—Uc Uy

(6)

Let fGlHG2 andf(;ﬁe1 be the forces applied, respectively, to

G, andG; at the contact point. Equilibrium conditions give
fGﬁGzz —feﬁel- Therefore, in the following, we will use

exclusively the quantitfs, .g,, which we will simply de-

&=—ve Uy
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(&, &) =min[ wn(én, &) b & E) U, (®
where u is the friction coefficient, and
(&, &) -
—=— if y(&,£)#0,
u=1 lld(&. &l e 9
0 it (&,&)=0.

Here are two examples of force models, which are the most
frequently used ones for practical simulations. We describe
those models without the Coulomb friction, which has to be
added afterwards according to E§).

Viscoelastic forceThis force, proposed by Cundall and
Strack [5] is a linear combination of elastic and viscous
terms. Energy is dissipated at the contact point by the vis-
cous term. We give the linear expression of this force, but
nonlinear versions have been proposed and investigaesd
[6])

d’n(gnv'fn):kngn"'cn.gnv (10

d(& !-ft) =ki&+ Ct-gt .

Walton force.This force, which models the elastoplastic
behavior of the grains at the contact point was proposed by
Walton and Braur7]. The energy is dissipated at a contact
as plastic deformation. The loading is assumed elastoplastic
and the unloading elastic. In either loading and unloading
phases, the force is taken as a linear function of the overlap.
As the force only depends on the overlap, the loading-
unloading paths obtained with the Walton force model may
be drawn on a force-overlap diagram, as sketched on Fig. 2,
left. In order to take into account the elastoplastic loading,
the loading slop&™® has to be lower than the purely elastic
unloading slopek??. If a reloading takes place, the force

(11)

note f. In the molecular-dynamics procedure, the contacfollows a purely elastic slope until it reaches the first loading

forces are computed as functions of the overlgpsand &
and their time derivative§, and &,

f=n(En EUn+ (&, &), (7)

where ¢ is a vector quantity parallel to the contact plaPe
Assuming that the tangential forcé (& ,&) does not al-

ready take into account the Coulomb friction, one has to

replace it in Eq.(7) by

g\
¢M

? A P
¢M

path[this corresponds to pa8) on the left diagram of Fig.

2]. It would have been more realistic to model the loading

phase as a first purely elastic part followed by a plastic part,
and to take into account the 3/2 exponent given by the Hertz
theory for the elastic part, but this simple model contains the
overall behavior of elastoplastic materials and is therefore
sufficient for a first approximation. The normal force reads

minf & k€] for £,>0,

d’n( gn !gn) = ma){ ¢I(12a)'0]

. (12
for ¢£,<0.

FIG. 2. Behavior of force-
overlap paths for Walton force
model (left) and the other model
(right). For each model the dia-
gram may be used either for a nor-
mal or a tangential force. The
paths divide in (1): loading,
(2a,2b): unloading, (3): reload-
ing.

Y
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In Eq. (12), 'é_—f
n
e,=— o
B =K (&= )+ a3 b
f
€= — ia (16)
whereg and ¢} are the values of, and ¢, at the instant &

¢, last changed signs, either from positive to negative or . o )
from negative to positivésee Fig. 2, left diagramA simple ~ Wherei andf as exponents refer to quantities immediately
expression for the tangential Walton force roughly takes théefore and immediately after the collision. Note teatde-

same features as the normal Walton force, pends on the impact angle when the contact is slippery but is
constant for a sticky contact. In this section, we assume the

contact is and remains sticky. The tangential restitution co-

_ min[ ¢ kM Jue for g0, efficient then has a fixed value. This also allows us to use
d(& &)= (23) . (14) directly Eq. (7), without Coulomb friction for the analytic
max ¢~ ,0]u, for §<0. resolutions. The slippery behavior of the contact, together
with the subsequent alteration ef will be provided after-
In Eq. (14), wards through Eq(8). We will find here the analytic expres-

sions fort., e,, ande; for the modeled contact as functions
of the model parameters. By inverting those expressions, we
HPV=kPA (g — M)+ M, (15 will be able to set the model parameters so #ate;, and
t. are controlled for single contact situations. The motion
_ equations for the grainG; andG, read
whereé& and g are the values of; and ¢, at the instant;,

last changed signs, either from positive to negative or from myx; = —f,
negative to positive and; is the unit vector defined when .
&#0 by u=§&/&. Both ¢, and | ¢ may be drawn as myx,=f,
functions 'of the overlapérespectively,lgn or &) on a force- l160,= — Ry /A,
overlap diagram as the left one of Fig. 2. )
Those two force models are the most used in simulations, l2,=—Roup/\f. (17)

and we will focus on them in the following as other models
that have been developddee, for example6,8]) usually  As the two grains experience the collision, plaRevill not
are improvements of those two. move much, which allows us to assurog is a constant.

Equation(3) then simplifies to¢= —v. and Eq.(2) gives

Il. TUNING MOLECULAR-DYNAMICS MODELS o _ .
WITH REAL EXPERIMENTS &=X;— X~ Uy/\(Ryw; + Ryy). (18)

Th(_e moIecuIar-'dynamics models described in Sec. Il argom Eqs.(17) and (18), one finds
technically operational, but the parameters of the force mod-
els (kn, K¢, Cn, C; for the viscoelastic model arid, k"), 1
k(2 | k(%3 for the Walton mod@ldo not have a true physi- f=— —f—
cal reality, which means they have @opriori expressions Meff
for which the modeled behavior will be realistic. Those pa- . o
rameters then have to be set empirically, so that the mod&/here 1Mmes=1/m,+1/m,. As the grains have no initial
quantitatively reproduces some real and well-known experiSPin, the centers of the grains will move in a plane. Calling
ments. Experiments that involve more than one contact at H. @ unit vector normal to that plane, we define a unit vector
time usually do not provide measures that allow any analytié@ngential to the contact by=u,/\u, . Equation(19) then
linking between the experiment and the model parameterdrojects onu, andu; as follows:
the number of cases to investigate for the resolution would

2 2
1 2
—— 4+ =
ER P

d(&,E), (19)

be too high, and numerical implementation would be very T 1 -
heavy. We are left with single contact experiments to set our &n= Mgt bnlén &),
parameters, with no guarantee that situations that involve R2 R2
i i icti _ - 1 2 :
several simultaneous contacts will then be realistically mod €= _( 4+t +_) d(ELE) Uy (20)
eled. Merr 11 12

The experiment we will work with is the collision of two
grainsG; andG, having no initial spin. Three key quantities Where&,= & - u,. Those differential equations may be solved
can be measured: the duration of the conta@nd the nor- for &, and¢;, based upon expressions f¢f and ¢, such as
mal and tangential restitution coefficiergs ande,, defined Egs.(10) and(11) or Egs.(12) and(14). For those two cases,
as follows using the notations of Sec. Il: we have the following solutions:
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Viscoelastic forceFrom Eqgs.(10), (11), and(20) we find
the following set of differential equations:

AL Kn £=0
T mer " Mt

2 52 2 52
. R\ . 1 R

1 R 1 R
o —+ —+ —=|&g+k +—+—=]£=0
R T Py A 1 P PR PO A

(21

Solving Eq.(21) provides expressions fog,, €;, andt,
according to Eq(16) as functions ofk,, c,, ki, andc;.
Inverting those expressions, we find

Me ¢
te

kn=—>-[7*+In(ey)?],

2Mg
cn=— - In(ey),
C

1 2 2
k= 1 Ri Rg [7+In(e)<],
tz( —+—=
EANLUN TN ER Pt
te =+ =
Mers 11 |1y

The set of equation&?) allows us to control the values of
€., €, andt, for single sticky contacts situations with the

viscoelastic force model.
Walton force.From Egs.(12), (14), and(20) we find the
following differential equations:

L kY :
&+t —&,=0 for £,>0,
Meft
2 2
4ty 2
Megr 11 2
k(2a) _ (1) )
. M=o for £,<0,

&=0 for &>0,

b

2a

k¢ >§ -

Mets Mefs
2 2

1 RZ RS

—t — 4+

Meis 11 1

X[k g — (k2D —kD)eM]=0 for <0, (23

Ent

ét"’

where the quantities) and &) refer to the values of,, and
¢, at the end of the loading phases. Solving E2@3) for

PHYSICAL REVIEW E 65 011302

m(1+e,)\?
n eff Ztc
1+e,)\?
(2a): 7T( n
I<n meff( 2tcen ’
2
KD 1 (77(1+et)
1 R ORI\ 2t )
_J’__
Mg 11 1o
1 m(1+e))?
Kk(2a) — ( 24
! 1 Rf R3| 2t 24
Meis 11 1

Equations(24) allow us to control the values @&, , e, and
t. for single sticky contacts situations with the Walton force
model.

By expressing the coefficients of the force models as
shown in this section, we know that any single sticking con-
tact situation will be realistically modeled. However, we
have no guarantee that situations involving several simulta-
neous contacts will be realistic.

IV. ENERGY DISSIPATION
FOR MULTIPARTICLE CONTACTS WITH
THE MOLECULAR-DYNAMICS MODELS

In Sec. lll, we found expressions for the parameters ruling
the behavior of the force model such that single contact ex-
periments are realistically modeled. With those expressions,
however, we do not have any guarantee that multiparticle
contacts will be accurate. We investigate here the behavior of
normal forces for multiparticle contacts when using expres-
sions found in Sec. Il for the model parameters, pointing out
that energy dissipation is then too low for quasistatic multi-
particle contacts.

A. Experimental setup

We use a set afi identical beads vertically stacked over a
bottom plate as shown ifil]. The initial distance between
neighboring beads and between the bottom bead and the bot-
tom plate is strictly positive, equal 9. Gravity is set to O,
energy being brought to the system through the initial veloc-
ity v;<<0, common to each of the beads. The beads are con-
strained to move vertically. Contacts are indexed from 1 for
the contact between the bottom plate and the bead at the
bottom of the stack tam for the contact between the two
topmost beads. This setup is represented on Fig. 3, with use-
ful notations.

When performing this simulation, the beads fall and con-
tacts occur in the stack. For small valued gf contact inter-
vals overlap; multiparticle contacts then take place. The
stack will eventually reach a state where all the beads move
upwards with velocities decreasing from the top of the stack,
ensuring that no further contact will take place. We may then

solutions with continuous derivatives gives expressions fomeasure the ratie of the final total kinetic energy over the

e, &, andt, according to Eq(16) as functions ok,, c,,
ki, andc;. Inverting those expressions, we find

initial total kinetic energy. This ratio measures the energy
loss due to the contacts that took place inside the stack. We
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FIG. 3. Experimental setup. Contacts numbered starting at plate. |G 4. Energy dissipated for multiparticle contacts with some

molecular-dynamics force models.
also measure the force-overlap path for each contact. The

energy dissipated gt a poptact is the surface in the forc%ading-unloading may take place in the paraj2leading to
overlap plane that is delimited by the force-overlap path. g energy dissipation at all. Instead of taking a purely elastic
slope for reloadings, we may assume reloadings are elasto-
B. Energy dissipation with the usual force models plastic, with the same properties as the first loading. This
As written in[1],  only depends on the value hfiv;At, ~ Modifies the part3) on the left diagram of Fig. 2 to that on
independently of the values of , At andl; taken separately. the right diagram, as any reloading phase then has the slope
Plotting  againstl; /v;At leads to the curves shown on Fig. k™. Unfortunately, the overlap may then grow indefinitely
4. Reference1] concludes that for dense granular mediaWith & bounded force, which leads to the model dissipating
(small values of;), no matter how small the value aft, the @l available energy. That is why we impose the last part
dissipated energy will be about ten percent of the initial en{2b) of the unloading path to be elastic with a strictly posi-
ergy, which may be too low, in particular, this lead{8jto  tive fixed slope, as shown on the right diagram of Fig. 2.
very unrealistic behaviors. We compare the energy dissipategtherwise stated, we use heré,€) either for (¢,,£,) or
at each contact wheh=0 m andl;=5x10 % mon Fig. 8 ([ #.&), thus describing the normal and tangential force
with the viscoelastic and Walton force models. WHga5 ~ Models at the same time. We will now quantify exactly how
%104 m, all the contacts that occur are single contacts andhuch energy will be lost with this model every time a con-
the energy dissipation is therefore accurate for the two forc&aCt occurs. In order to do that, we introduce the endfgy
models discussed here. Whér=0, multiparticle contacts Stored in a contact as
take place and we see that the energy dissipated at each . .
contact is very much lower than for the previous case. In Fig. E=a(1)¢, (25
5, we show the force-overlap paths obtained with=
—0.2 m/s,|;=0, for contacts 1(between the bottom plate
and the bead lying on)it 4, 7, and 10(between the two
topmost beadseither for the viscoelastic and the Walton
force models. Note that the slope for the first loading of th , e
first contact is twice that of the other contacts, this is becausgi0T€d in the contact we may exprdé&® so tgat the part of
this contact is between a bead and the bottom plate whete dissipated in this unloading phase is<&;)E if no re-
mass is infinite. We see that either for the viscoelastic or thé®ading takes place
Walton force models, there is plenty of space available in the H—K2)g
force-overlap diagram to dissipate energy. This space is not K = 50
used by any of those models and the additional dissipation §-&n
brought by the multiparticle contacts is restricted to a small ) ) )
hysteretic surfacdcircled by a spiral for the viscoelastic Whereén is the value of¢ for which (2a) and () inter-
model and by triangles for the Walton mopeDne idea S€ct
would be to use more of the space available in the force-
overlap diagram.

with E=0 when the contact begins. The energy dissipated by
the contact is the surface circled by the path of the force on
a force-overlap diagram. Assuming an unloading phase be-
gJins at point €,¢) on such a diagram, with some enerigy

(26)

 pé—2€lE

=k’
V. USING AVAILABLE SPACE IN
THE FORCE-OVERLAP DIAGRAM With Egs.(26) and(27) the energy dissipated at the end of
the contact will be 1—e,21 times the total energy brought to
The Walton force model gives an expression of the forcghe contact, no matter how many reloadings take place or
that only depends on the overlap. It is then easy to represemthen they take place. Equatiof®6) and (27) express the
the force-overlap path. This kind of path for the Walton slopek®® as a function ok and of &, ,E), which is
model is shown on the left diagram of Fig. 2. A cycle of the state of the contact at the begining of the unloading. We

én (27)
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still have to set values fok®) and k®®). k*) controls the t) is half the duration of a single contact. We now discuss
duration of the loading phase for a single contact. Solvinghe value of the slop&®?. Let a be
the motion equations for a single contact, one finds the fol-

Ifowing expressions fok(*) for either normal or tangential K(2b)
orces:

a= W (29)

2

1)_ T
kg )_meff< (1) 1 L. )
2t Intuitively, when o nears 1, there is not enough space be-

1 7 |2 tween(1) and () to dissipate energy, there is therefore a
k§1)= — ) , (28)  value above whiche must not go. Integrating the force-
i & & 2t overlap path for a single contact, one finds the inequality
Mers 11 |y <1-e€2. Ask® s strictly positive, so isx and we have
wheret®) is the duration of the loading phase for a single 5
contact. For the simulations, we také)=(1/2)t.; that is, O<as=l-ey. (30
time (s) time (s)
o2 001 002 003 004 005 0 001 002 003 004 0.05
0.2 ] 0.2 ] FIG. 6. Overlaps drawn
_ ' against time for a bead subject to
.f 0.4 ] 04 . gravity lying on a plane and simu-
=2 lated with the model. On the left,
%0'6 ] 0.6 ] a=0.5 and on the righw=0.9.
Bos | 0.8 | In both cases, the bead weighs
3 0.188 kg.
1 1
1.2 ; . ; : 1.2
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contact index FIG. 8. Energy dissipated at each contact for various force mod-

FIG. 7. Ratio of the energy dissipated at a contact over the totag|s and for two values df .

energy brought to this contact for all the contacts of the numerical

experiment of Sec. IV. Contact index is 1 for the contact betweerand for all three force models. It is clear that the only model

the bottom plate and the stack of beads and 10 between the twilnat controls the raticy/€ is the one we propose in this

topmost beads. section. Figure 7 shows that the case where all contacts are

single (;=5.10% m) is very similar to the multiparticle

Now, consider a single bead subject to gravity lying on ancase (=0 m) simulated with the model. Figure 8 shows

horizontal plane. If the bead is initially tangent to the plane that the energy dissipated at each contact is higher for this

it will slightly move down until an equlilibrium is reached model than for the previous ones. We draw in Fig. 5 the force

after a timet, with the force between the bead and the planepaths for contacts 1, 4, 7, and 10 with the force model. We

equal to the weight of the bead. The timedepends on the see that the surface circled by the path is there greater than

value of @. The largera is, the smallert, will be, with a  for the viscoelastic or the Walton force models.

minimal value fort, when « reaches its maximal value of

1—eﬁ. In Fig. 6, the overlap is drawn against time for two VIl. CONCLUSION

values ofa for this experiment of a bead lying on a plane.

This figure shows that the stability is quicker for high values

10

We described a molecular-dynamics model able to in-
—_— ; : _ crease the energy dissipation in multiparticle contacts situa-
of a. Note that ifa =0, which violates Eq(30), te= + as tions. With this model, it is possible to choose the fraction of

the overlap will grow infinite. In this case, potential energy ) N
transforms into kinetic energy and dissipates at the contact{1e energy brought to the contact that will be dissipated,

point, leading to the dissipation of an infinite amount of po_lndependently of the loading-unioading history of the con-

tential energy together with the bead moving downwards iriaCt’ Wh'(.:h IS not the case for the usual force modells. This
the plane eature, in comparison to the Walton force model is that

loading-unloading cycles will take advantage of the room
available in the force-overlap plane to dissipate more energy.
VI. ENERGY DISSIPATION WITH THE FORCE MODEL However, some of the parameters of this model may still be
improved, as for example, the slope of the loading/reloading
hase that was taken equal to the slope of the loading phase
f the Walton mode(24). This slope could, for example, be

We perform the experiment described in Sec. IV with the
model, and compare the results with those obtained with?
Walton and viscoelastic models. Figure 4 shows that the total .
energy dissipated by the stack of beads is significantly highe(fhanged from one reloading to the next one. Those param-

for this model than for the previous ones, for small values Oﬁtenrsl h‘;’(‘ver;[r?] bn? vfal;dfatr(taﬁ \rNil:rT (r:o\|/”n[r):r|nston ]Ec;hsome da?d"
l; /v;At. Let € be the total energy brought to a contact, that is onal experiments for further improvements ot the mode.

the work of the contact force in all loading and reloading
phases, andy the amount of energy dissipated in the same
contact. With Eqs(26) and (27), the ratio&y/€ is always This project was supported by DONET and by the Swiss
equal to (1-€2), independently of the loading-unloading National Science Foundation. We would like to thank J.-A.
history of the contact. This was not the case for the forceFerrez for his constant help and L. Guy Raguin for the many
models of Sec. Il. Performing the numerical experiment offruitful discussions we had and for his clever comments on
Sec. IV, we draw on Fig. 7 the rati§,/€ for each contact the last versions of this paper.
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